Disruption of the interface between the pleckstrin homology (PH) and kinase domains of Akt protein is sufficient for hydrophobic motif site phosphorylation in the absence of mTORC2.

نویسندگان

  • Noel A Warfel
  • Matt Niederst
  • Alexandra C Newton
چکیده

The pro-survival kinase Akt requires phosphorylation at two conserved residues, the activation loop site (Thr-308) and the hydrophobic motif site (Ser-473), for maximal activation. Previous reports indicate that mTORC2 is necessary for phosphorylation of the hydrophobic motif and that this site is not phosphorylated in cells lacking components of the mTORC2 complex, such as Sin1. Here we show that Akt can be phosphorylated at the hydrophobic motif site (Ser-473) in the absence of mTORC2. First, increasing the levels of PIP(3) in Sin1(-/-) MEFs by (i) expression of a constitutively active PI3K or (ii) relief of a negative feedback loop on PI3K by prolonged inhibition of mTORC1 or S6K is sufficient to rescue hydrophobic motif phosphorylation of Akt. The resulting accumulation of PIP(3) at the plasma membrane results in Ser-473 phosphorylation. Second, constructs of Akt in which the PH domain is constitutively disengaged from the kinase domain are phosphorylated at the hydrophobic motif site in Sin1(-/-) MEFs; both myristoylated-Akt and Akt lacking the PH domain are phosphorylated at Ser-473. Thus, disruption of the interface between the PH and kinase domains of Akt bypasses the requirement for mTORC2. In summary, these data support a model in which Akt can be phosphorylated at Ser-473 and activated in the absence of mTORC2 by mechanisms that depend on removal of the PH domain from the kinase domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate.

mTORC2 (mammalian target of rapamycin complex 2) plays important roles in signal transduction by regulating an array of downstream effectors, including protein kinase AKT. However, its regulation by upstream regulators remains poorly characterized. Although phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is known to regulate the phosphorylation of AKT Ser(473), the hydrophobic moti...

متن کامل

Protein kinase B/Akt at a glance.

Among the signalling proteins that respond to a large variety of signals, protein kinase B (PKB, also known as Akt) appears to be a central player in regulation of metabolism, cell survival, motility, transcription and cell-cycle progression. Conserved from primitive metazoans to humans, PKB belongs to the AGC subfamily of the protein kinase superfamily, which consists of 518 members in humans ...

متن کامل

Localization of mTORC2 activity inside cells

Activation of protein kinase Akt via its direct phosphorylation by mammalian target of rapamycin (mTOR) complex 2 (mTORC2) couples extracellular growth and survival cues with pathways controlling cell growth and proliferation, yet how growth factors target the activity of mTORC2 toward Akt is unknown. In this study, we examine the localization of the obligate mTORC2 component, mSin1, inside cel...

متن کامل

Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of P...

متن کامل

Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling.

Precise balance between phosphorylation, catalyzed by protein kinases, and dephosphorylation, catalyzed by protein phosphatases, is essential for cellular homeostasis. Deregulation of this balance leads to pathophysiological states that drive diseases such as cancer, heart disease, and diabetes. The recent discovery of the PHLPP (pleckstrin homology domain leucine-rich repeat protein phosphatas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 45  شماره 

صفحات  -

تاریخ انتشار 2011